skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cundy, Donald III"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optogenetics has transformed studies of neural circuit function, but remains challenging to apply in non-human primates (NHPs). A major challenge is delivering intense and spatially precise patterned photostimulation across large volumes in deep tissue. Here, we have developed and tested the Utah Optrode Array (UOA) to meet this critical need. The UOA is a 10×10 glass waveguide array bonded to an electrically-addressable μLED array. In vivo electrophysiology and immediate early gene (c-fos) immunohistochemistry demonstrate that the UOA allows for large-scale spatiotemporally precise neuromodulation of deep tissue in macaque primary visual cortex. Specifically, the UOA permits either focal (confined to single layers or columns), or large-scale (across multiple layers or columns) photostimulation of deep cortical layers, simply by varying the number of simultaneously activated μLEDs and/or the light irradiance. These results establish the UOA as a powerful tool for studying targeted neural populations within single or across multiple deep layers in complex NHP circuits. 
    more » « less